Block of the Kir2.1 Channel Pore by Alkylamine Analogues of Endogenous Polyamines
نویسندگان
چکیده
Inward rectification induced by mono- and diaminoalkane application to inside-out membrane patches was studied in Kir2.1 (IRK1) channels expressed in Xenopus oocytes. Both monoamines and diamines block Kir2.1 channels, with potency increasing as the alkyl chain length increases (from 2 to 12 methylene groups), indicating a strong hydrophobic interaction with the blocking site. For diamines, but not monoamines, increasing the alkyl chain also increases the steepness of the voltage dependence, at any concentration, from a limiting minimal value of approximately 1.5 (n = 2 methylene groups) to approximately 4 (n = 10 methylene groups). These observations lead us to hypothesize that monoamines and diamines block inward rectifier K+ channels by entering deeply into a long, narrow pore, displacing K+ ions to the outside of the membrane, with this displacement of K+ ions contributing to "extra" charge movement. All monoamines are proposed to lie with the "head" amine at a fixed position in the pore, determined by electrostatic interaction, so that zdelta is independent of monoamine alkyl chain length. The head amine of diamines is proposed to lie progressively further into the pore as alkyl chain length increases, thus displacing more K+ ions to the outside, resulting in charge movement (zdelta) increasing with the increase in alkyl chain length.
منابع مشابه
The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel.
Although chloroquine remains an important therapeutic agent for treatment of malaria in many parts of the world, its safety margin is very narrow. Chloroquine inhibits the cardiac inward rectifier K(+) current I(K1) and can induce lethal ventricular arrhythmias. In this study, we characterized the biophysical and molecular basis of chloroquine block of Kir2.1 channels that underlie cardiac I(K1...
متن کاملA synergistic blocking effect of Mg2+ and spermine on the inward rectifier K+ (Kir2.1) channel pore
Inward rectifier K(+) channels (Kir2.1) exhibit an extraordinary rectifying feature in the current-voltage relationship. We have previously showed that the bundle-crossing region of the transmembrane domain constitutes the crucial segment responsible for the polyamine block. In this study, we demonstrated that the major blocking effect of intracellular Mg(2+) on Kir2.1 channels is also closely ...
متن کاملNovel Gating Mechanism of Polyamine Block in the Strong Inward Rectifier K Channel Kir2.1
Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have ...
متن کاملLong Polyamines Act as Cofactors in PIP2 Activation of Inward Rectifier Potassium (Kir2.1) Channels
Phosphatidylinosital-4,5-bisphosphate (PIP2) acts as an essential factor regulating the activity of all Kir channels. In most Kir members, the dependence on PIP2 is modulated by other factors, such as protein kinases (in Kir1), G(betagamma) (in Kir3), and the sulfonylurea receptor (in Kir6). So far, however, no regulator has been identified in Kir2 channels. Here we show that polyamines, which ...
متن کاملSpermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1
Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg(2+). Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 112 شماره
صفحات -
تاریخ انتشار 1998